The Cloud Storage sink connector supports exporting data from Pulsar topics to cloud storage (such as AWS S3 and Google GCS) either in Avro, JSON, Parquet or other formats. According to your environment, the Cloud Storage sink connector can guarantee exactly-once support for exporting data to cloud storage.
You can get the Cloud Storage sink connector using one of the following methods:
Download the NAR package from here.
Build it from the source code.
Clone the source code to your machine.
git clone https://github.com/streamnative/pulsar-io-cloud-storage.git
Assume that PULSAR_IO_CLOUD_STORAGE_HOME
is the home directory for the pulsar-io-cloud-storage
repo. Build the connector in the ${PULSAR_IO_CLOUD_STORAGE_HOME}
directory.
mvn clean install -DskipTests
After the connector is successfully built, a NAR
package is generated under the target
directory.
ls target
pulsar-io-cloud-storage-2.9.4.4.nar
Pull the Cloud Storage connector Docker image from here.
Before using the Cloud Storage sink connector, you need to configure it.
You can create a configuration file (JSON or YAML) to set the following properties.
Name | Type | Required | Default | Description |
---|---|---|---|---|
provider |
String | True | null | The Cloud Storage type, such as aws-s3 ,s3v2 (s3v2 uses the AWS client but not the JCloud client). |
accessKeyId |
String | True | null | The Cloud Storage access key ID. It requires permission to write objects. |
secretAccessKey |
String | True | null | The Cloud Storage secret access key. |
role |
String | False | null | The Cloud Storage role. |
roleSessionName |
String | False | null | The Cloud Storage role session name. |
endpoint |
String | True | null | The Cloud Storage endpoint. |
bucket |
String | True | null | The Cloud Storage bucket. |
formatType |
String | False | "json" | The data format type. Available options are JSON, Avro, Bytes, or Parquet. By default, it is set to JSON. |
partitionerType |
String | False | "partition" | The partitioning type. It can be configured by topic partitions or by time. By default, the partition type is configured by topic partitions. |
timePartitionPattern |
String | False | "yyyy-MM-dd" | The format pattern of the time-based partitioning. For details, refer to the Java date and time format. |
timePartitionDuration |
String | False | "86400000" | The time interval for time-based partitioning. Support formatted interval string, such as 30d , 24h , 30m , 10s , and also support number in milliseconds precision, such as 86400000 refers to 24h or 1d . |
batchSize |
int | False | 10 | The number of records submitted in batch. |
batchTimeMs |
long | False | 1000 | The interval for batch submission. |
maxBatchBytes |
long | False | 10000000 | The maximum number of bytes in a batch. |
sliceTopicPartitionPath |
Boolean | False | false | When it is set to true , split the partitioned topic name into separate folders in the bucket path. |
withMetadata |
Boolean | False | false | Save message attributes to metadata. |
useHumanReadableMessageId |
Boolean | False | false | Use a human-readable format string for messageId in message metadata. The messageId is in a format like ledgerId:entryId:partitionIndex:batchIndex . Otherwise, the messageId is a Hex-encoded string. |
withTopicPartitionNumber |
Boolean | False | true | When it is set to true , include the topic partition number to the object path. |
bytesFormatTypeSeparator |
String | False | "0x10" | It is inserted between records for the formatType of bytes. By default, it is set to '0x10'. An input record that contains the line separator looks like multiple records in the output object. |
pendingQueueSize |
int | False | 10 | The number of records buffered in queue. By default, it is equal to batchSize . You can set it manually. |
useHumanReadableSchemaVersion |
Boolean | False | false | Use a human-readable format string for the schema version in the message metadata. If it is set to true , the schema version is in plain string format. Otherwise, the schema version is in hex-encoded string format. |
skipFailedMessages |
Boolean | False | false | Configure whether to skip a message which it fails to be processed. If it is set to true , the connector will skip the failed messages by ack it. Otherwise, the connector will fail the message. |
pathPrefix |
String | False | false | If it is set, the output files are stored in a folder under the given bucket path. The pathPrefix must be in the format of xx/xxx/ . |
avroCodec |
String | False | snappy | Compression codec used when formatType=avro . Available compression types are: null (no compression), deflate, bzip2, xz, zstandard, snappy. |
parquetCodec |
String | False | gzip | Compression codec used when formatType=parquet . Available compression types are: null (no compression), snappy, gzip, lzo, brotli, lz4, zstd. |
The provided AWS credentials must have permissions to access AWS resources. To use the Cloud Storage sink connector, the suggested permission policies for AWS S3 are:
s3:AbortMultipartUpload
s3:GetObject*
s3:PutObject*
s3:List*
If you do not want to provide region
in the configuration, you should enable the s3:GetBucketLocation
permission policy as well.
Name | Type | Required | Default | Description |
---|---|---|---|---|
provider |
String | True | null | The Cloud Storage type, google cloud storage only supports the google-cloud-storage provider. |
gcsServiceAccountKeyFilePath |
String | False | "" | Path to the GCS credentials file. If empty, the credentials file will be read from the GOOGLE_APPLICATION_CREDENTIALS environment variable. |
gcsServiceAccountKeyFileContent |
String | False | "" | The contents of the JSON service key file. If empty, credentials are read from gcsServiceAccountKeyFilePath file. |
bucket |
String | True | null | The Cloud Storage bucket. |
formatType |
String | False | "json" | The data format type. Available options are JSON, Avro, Bytes, or Parquet. By default, it is set to JSON. |
partitionerType |
String | False | "partition" | The partitioning type. It can be configured by topic partitions or by time. By default, the partition type is configured by topic partitions. |
timePartitionPattern |
String | False | "yyyy-MM-dd" | The format pattern of the time-based partitioning. For details, refer to the Java date and time format. |
timePartitionDuration |
String | False | "86400000" | The time interval for time-based partitioning. Support formatted interval string, such as 30d , 24h , 30m , 10s , and also support number in milliseconds precision, such as 86400000 refers to 24h or 1d . |
batchSize |
int | False | 10 | The number of records submitted in batch. |
batchTimeMs |
long | False | 1000 | The interval for batch submission. |
maxBatchBytes |
long | False | 10000000 | The maximum number of bytes in a batch. |
sliceTopicPartitionPath |
Boolean | False | false | When it is set to true , split the partitioned topic name into separate folders in the bucket path. |
withMetadata |
Boolean | False | false | Save message attributes to metadata. |
useHumanReadableMessageId |
Boolean | False | false | Use a human-readable format string for messageId in message metadata. The messageId is in a format like ledgerId:entryId:partitionIndex:batchIndex . Otherwise, the messageId is a Hex-encoded string. |
withTopicPartitionNumber |
Boolean | False | true | When it is set to true , include the topic partition number to the object path. |
bytesFormatTypeSeparator |
String | False | "0x10" | It is inserted between records for the formatType of bytes. By default, it is set to '0x10'. An input record that contains the line separator looks like multiple records in the output object. |
pendingQueueSize |
int | False | 10 | The number of records buffered in queue. By default, it is equal to batchSize . You can set it manually. |
useHumanReadableSchemaVersion |
Boolean | False | false | Use a human-readable format string for the schema version in the message metadata. If it is set to true , the schema version is in plain string format. Otherwise, the schema version is in hex-encoded string format. |
skipFailedMessages |
Boolean | False | false | Configure whether to skip a message which it fails to be processed. If it is set to true , the connector will skip the failed messages by ack it. Otherwise, the connector will fail the message. |
pathPrefix |
String | False | false | If it is set, the output files are stored in a folder under the given bucket path. The pathPrefix must be in the format of xx/xxx/ . |
avroCodec |
String | False | snappy | Compression codec used when formatType=avro . Available compression types are: null (no compression), deflate, bzip2, xz, zstandard, snappy. |
parquetCodec |
String | False | gzip | Compression codec used when formatType=parquet . Available compression types are: null (no compression), snappy, gzip, lzo, brotli, lz4, zstd. |
Name | Type | Required | Default | Description |
---|---|---|---|---|
provider |
String | True | null | The Cloud Storage type. Azure Blob Storage only supports the azure-blob-storage provider. |
azureStorageAccountSASToken |
String | True | "" | The Azure Blob Storage account SAS token. Required when authenticating via SAS token. |
azureStorageAccountName |
String | True | "" | The Azure Blob Storage account name. Required when authenticating via account name and account key. |
azureStorageAccountKey |
String | True | "" | The Azure Blob Storage account key. Required when authenticating via account name and account key. |
azureStorageAccountConnectionString |
String | True | "" | The Azure Blob Storage connection string. Required when authenticating via connection string. |
endpoint |
String | True | null | The Azure Blob Storage endpoint. |
bucket |
String | True | null | The Cloud Storage bucket. |
formatType |
String | False | "json" | The data format type. Available options are JSON, Avro, Bytes, or Parquet. By default, it is set to JSON. |
partitionerType |
String | False | "partition" | The partitioning type. It can be configured by topic partitions or by time. By default, the partition type is configured by topic partitions. |
timePartitionPattern |
String | False | "yyyy-MM-dd" | The format pattern of the time-based partitioning. For details, refer to the Java date and time format. |
timePartitionDuration |
String | False | "86400000" | The time interval for time-based partitioning. Support formatted interval string, such as 30d , 24h , 30m , 10s , and also support number in milliseconds precision, such as 86400000 refers to 24h or 1d . |
batchSize |
int | False | 10 | The number of records submitted in batch. |
batchTimeMs |
long | False | 1000 | The interval for batch submission. |
maxBatchBytes |
long | False | 10000000 | The maximum number of bytes in a batch. |
sliceTopicPartitionPath |
Boolean | False | false | When it is set to true , split the partitioned topic name into separate folders in the bucket path. |
withMetadata |
Boolean | False | false | Save message attributes to metadata. |
useHumanReadableMessageId |
Boolean | False | false | Use a human-readable format string for messageId in message metadata. The messageId is in a format like ledgerId:entryId:partitionIndex:batchIndex . Otherwise, the messageId is a Hex-encoded string. |
withTopicPartitionNumber |
Boolean | False | true | When it is set to true , include the topic partition number to the object path. |
bytesFormatTypeSeparator |
String | False | "0x10" | It is inserted between records for the formatType of bytes. By default, it is set to '0x10'. An input record that contains the line separator looks like multiple records in the output object. |
pendingQueueSize |
int | False | 10 | The number of records buffered in queue. By default, it is equal to batchSize . You can set it manually. |
useHumanReadableSchemaVersion |
Boolean | False | false | Use a human-readable format string for the schema version in the message metadata. If it is set to true , the schema version is in plain string format. Otherwise, the schema version is in hex-encoded string format. |
skipFailedMessages |
Boolean | False | false | Configure whether to skip a message which it fails to be processed. If it is set to true , the connector will skip the failed messages by ack it. Otherwise, the connector will fail the message. |
pathPrefix |
String | False | false | If it is set, the output files are stored in a folder under the given bucket path. The pathPrefix must be in the format of xx/xxx/ . |
avroCodec |
String | False | snappy | Compression codec used when formatType=avro . Available compression types are: null (no compression), deflate, bzip2, xz, zstandard, snappy. |
parquetCodec |
String | False | gzip | Compression codec used when formatType=parquet . Available compression types are: null (no compression), snappy, gzip, lzo, brotli, lz4, zstd. |
Cloud Storage Sink Connector provides multiple output format options, including JSON, Avro, Bytes, or Parquet. The default format is JSON. With current implementation, there are some limitations for different formats:
This table lists the Pulsar Schema types supported by the writers.
Pulsar Schema | Writer: Avro | Writer: JSON | Writer: Parquet | Writer: Bytes |
---|---|---|---|---|
Primitive | ✗ | ✔ * | ✗ | ✔ |
Avro | ✔ | ✔ | ✔ | ✔ |
Json | ✔ | ✔ | ✔ | ✔ |
Protobuf ** | ✔ | ✔ | ✔ | ✔ |
ProtobufNative | ✔ *** | ✗ | ✔ | ✔ |
*: The JSON writer will try to convert the data with a
String
orBytes
schema to JSON-format data if convertable.**: The Protobuf schema is based on the Avro schema. It uses Avro as an intermediate format, so it may not provide the best effort conversion.
***: The ProtobufNative record holds the Protobuf descriptor and the message. When writing to Avro format, the connector uses avro-protobuf to do the conversion.
This table lists the support of withMetadata
configurations for different writer formats:
Writer Format | withMetadata |
---|---|
Avro | ✔ |
JSON | ✔ |
Parquet | ✔ * |
Bytes | ✗ |
*: When using
Parquet
withPROTOBUF_NATIVE
format, the connector will write the messages withDynamicMessage
format. WhenwithMetadata
is set totrue
, the connector will add__message_metadata__
to the messages withPulsarIOCSCProtobufMessageMetadata
format.For example, if a message
User
has the following schema:
syntax = "proto3"; message User { string name = 1; int32 age = 2; }
When
withMetadata
is set totrue
, the connector will write the messageDynamicMessage
with the following schema:
syntax = "proto3"; message PulsarIOCSCProtobufMessageMetadata { map<string, string> properties = 1; string schema_version = 2; string message_id = 3; } message User { string name = 1; int32 age = 2; PulsarIOCSCProtobufMessageMetadata __message_metadata__ = 3; }
You can create a configuration file (JSON or YAML) to set the properties as below.
Example
JSON
{
"tenant": "public",
"namespace": "default",
"name": "cloud-storage-sink",
"inputs": [
"user-avro-topic"
],
"archive": "connectors/pulsar-io-cloud-storage-0.0.1.nar",
"parallelism": 1,
"configs": {
"provider": "aws-s3",
"accessKeyId": "accessKeyId",
"secretAccessKey": "secretAccessKey",
"role": "none",
"roleSessionName": "none",
"bucket": "testBucket",
"region": "local",
"endpoint": "us-standard",
"formatType": "parquet",
"partitionerType": "time",
"timePartitionPattern": "yyyy-MM-dd",
"timePartitionDuration": "1d",
"batchSize": 10,
"batchTimeMs": 1000
}
}
YAML
tenant: "public"
namespace: "default"
name: "Cloud Storage-sink"
inputs:
- "user-avro-topic"
archive: "connectors/pulsar-io-cloud-storage-0.0.1.nar"
parallelism: 1
configs:
provider: "aws-s3",
accessKeyId: "accessKeyId"
secretAccessKey: "secretAccessKey"
role: "none"
roleSessionName: "none"
bucket: "testBucket"
region: "local"
endpoint: "us-standard"
formatType: "parquet"
partitionerType: "time"
timePartitionPattern: "yyyy-MM-dd"
timePartitionDuration: "1d"
batchSize: 10
batchTimeMs: 1000
You can submit a CustomResourceDefinitions (CRD) to create a Cloud Storage sink connector. Using CRD makes Function Mesh naturally integrate with the Kubernetes ecosystem. For more information about Pulsar sink CRD configurations, see here.
You can define a CRD file (YAML) to set the properties as below.
apiVersion: compute.functionmesh.io/v1alpha1
kind: Sink
metadata:
name: cloud-storage-sink-sample
spec:
image: streamnative/pulsar-io-cloud-storage:2.9.4.4
className: org.apache.pulsar.io.jcloud.sink.CloudStorageGenericRecordSink
replicas: 1
maxReplicas: 1
input:
topic: persistent://public/default/user-avro-topic
typeClassName: “[B”
sinkConfig:
provider: "aws-s3",
accessKeyId: "accessKeyId"
secretAccessKey: "secretAccessKey"
role: "none"
roleSessionName: "none"
bucket: "testBucket"
region: "local"
endpoint: "us-standard"
formatType: "parquet"
partitionerType: "time"
timePartitionPattern: "yyyy-MM-dd"
timePartitionDuration: "1d"
batchSize: 10
batchTimeMs: 1000
pulsar:
pulsarConfig: "test-pulsar-sink-config"
resources:
limits:
cpu: "0.2"
memory: 1.1G
requests:
cpu: "0.1"
memory: 1G
java:
jar: connectors/pulsar-io-cloud-storage-2.9.4.4.nar
clusterName: test-pulsar
You can use the Cloud Storage sink connector with Function Worker or Function Mesh.
You can use the Cloud Storage sink connector as a non built-in connector or a built-in connector.
If you already have a Pulsar cluster, you can use the Cloud Storage sink connector as a non built-in connector directly.
This example shows how to create an Cloud Storage sink connector on a Pulsar cluster using the pulsar-admin sinks create
command.
PULSAR_HOME/bin/pulsar-admin sinks create \
--archive pulsar-io-cloud-storage-2.9.4.4.nar \
--sink-config-file cloud-storage-sink-config.yaml \
--classname org.apache.pulsar.io.jcloud.sink.CloudStorageGenericRecordSink \
--name cloud-storage-sink
You can make the Cloud Storage sink connector as a built-in connector and use it on a standalone cluster or on-premises cluster.
This example describes how to use the Cloud Storage sink connector to export data from Pulsar topics to cloud storage (such as AWS S3 and Google GCS) in standalone mode.
Prepare the AWS Cloud Storage service. In this example, we use Cloud Storagemock
as an example.
docker pull apachepulsar/s3mock:latest
docker run -p 9090:9090 -e initialBuckets=pulsar-integtest apachepulsar/s3mock:latest
Put the pulsar-io-cloud-storage-2.5.1.nar
in the Pulsar connector catalog.
cp pulsar-io-cloud-storage-2.5.1.nar $PULSAR_HOME/connectors/pulsar-io-cloud-storage-2.5.1.nar
Start Pulsar in the standalone mode.
$PULSAR_HOME/bin/pulsar standalone
Run the Cloud Storage sink connector locally.
$PULSAR_HOME/bin/pulsar-admin sink localrun --sink-config-file cloud-storage-sink-config.yaml
Send Pulsar messages. Currently, only Avro or JSON schema is supported.
try (
PulsarClient pulsarClient = PulsarClient.builder()
.serviceUrl("pulsar://localhost:6650")
.build();
Producer<TestRecord> producer = pulsarClient.newProducer(Schema.AVRO(TestRecord.class))
.topic("public/default/test-parquet-avro")
.create();
) {
List<TestRecord> testRecords = Arrays.asList(
new TestRecord("key1", 1, null),
new TestRecord("key2", 1, new TestRecord.TestSubRecord("aaa"))
);
for (TestRecord record : testRecords) {
producer.send(record);
}
}
Validate Cloud Storage data.
To get the path, you can use the jclould to verify the file, as shown below.
Properties overrides = new Properties();
overrides.put(“jclouds.s3.virtual-host-buckets”, “false”);
BlobStoreContext blobStoreContext = ContextBuilder.newBuilder(“aws-s3”)
.credentials(
“accessKeyId”,
“secretAccessKey”
)
.endpoint(“http://localhost:9090”) // replace to s3mock url
.overrides(overrides)
.buildView(BlobStoreContext.class);
BlobStore blobStore = blobStoreContext.getBlobStore();
final long sequenceId = FunctionCommon.getSequenceId(message.getMessageId());
final String path = “public/default/test-parquet-avro” + File.separator + “2020-09-14" + File.separator + sequenceId + “.parquet”;
final boolean blobExists = blobStore.blobExists(“testBucket”, path);
Assert.assertTrue(“the sink record does not exist”, blobExists);
You can find the data in your testBucket
bucket. The path is something like public/default/test-parquet-avro/2020-09-14/1234.parquet
.
The path consists of three parts, the basic part of the topic, partition information, and format suffix.
public/default/test-parquet-avro/
This part consists of the name of the tenant, namespace, and the input topic.2020-09-14/${messageSequenceId}
The date is generated based on the partitionerType
parameter in the configuration. And the ${messageSequenceId}
is generated by FunctionCommon.getSequenceId(message.getMessageId())
..parquet
This part is generated based on the formatType
parameter in the configuration.This example explains how to create a Cloud Storage sink connector in an on-premises cluster.
Copy the NAR package of the Cloud Storage connector to the Pulsar connectors directory.
cp pulsar-io-cloud-storage-2.9.4.4.nar $PULSAR_HOME/connectors/pulsar-io-cloud-storage-2.9.4.4.nar
Reload all built-in connectors.
PULSAR_HOME/bin/pulsar-admin sinks reload
Check whether the Cloud Storage sink connector is available on the list or not.
PULSAR_HOME/bin/pulsar-admin sinks available-sinks
Create a Cloud Storage connector on a Pulsar cluster using the pulsar-admin sinks create
command.
PULSAR_HOME/bin/pulsar-admin sinks create \
--sink-type cloud-storage \
--sink-config-file cloud-storage-sink-config.yaml \
--name cloud-storage-sink
This example demonstrates how to create Cloud Storage sink connector through Function Mesh.
Create and connect to a Kubernetes cluster.
Create a Pulsar cluster in the Kubernetes cluster.
Install the Function Mesh Operator and CRD into the Kubernetes cluster.
Define the Cloud Storage sink connector with a YAML file and save it as sink-sample.yaml
.
This example shows how to publish the Cloud Storage sink connector to Function Mesh with a Docker image.
apiVersion: compute.functionmesh.io/v1alpha1
kind: Sink
metadata:
name: cloud-storage-sink-sample
spec:
image: streamnative/pulsar-io-cloud-storage:2.9.4.4
className: org.apache.pulsar.io.jcloud.sink.CloudStorageGenericRecordSink
replicas: 1
maxReplicas: 1
input:
topic: persistent://public/default/user-avro-topic
typeClassName: “[B”
sinkConfig:
provider: "aws-s3",
accessKeyId: "accessKeyId"
secretAccessKey: "secretAccessKey"
role: "none"
roleSessionName: "none"
bucket: "testBucket"
region: "local"
endpoint: "us-standard"
formatType: "parquet"
partitionerType: "time"
timePartitionPattern: "yyyy-MM-dd"
timePartitionDuration: "1d"
batchSize: 10
batchTimeMs: 1000
pulsar:
pulsarConfig: "test-pulsar-sink-config"
resources:
limits:
cpu: "0.2"
memory: 1.1G
requests:
cpu: "0.1"
memory: 1G
java:
jar: connectors/pulsar-io-cloud-storage-2.9.4.4.nar
clusterName: test-pulsar
Apply the YAML file to create the Cloud Storage sink connector.
Input
kubectl apply -f <path-to-sink-sample.yaml>
Output
sink.compute.functionmesh.io/cloud-storage-sink-sample created
Check whether the Cloud Storage sink connector is created successfully.
Input
kubectl get all
Output
NAME READY STATUS RESTARTS AGE
pod/cloud-storage-sink-sample-0 1/1 Running 0 77s
After that, you can produce and consume messages using the Cloud Storage sink connector between Pulsar and your cloud storage provider.